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EXECUTIVE SUMMARY 

V11261- Feasibility of Remote Sensing to Detect Psa Infected Vines or Vines at Risk of Psa Infection 

This project was a preliminary assessment of the ability of remotely sensed (satellite) imagery to 
detect vine stress related to Pseudomonas syringae pv. actinidiae infection in kiwifruit. A historical 
archived time-series of 5 images from the RapidEye satellite was obtained for the 2010-11 season. 
The imagery covered the period from early October 2010 to early February 2011. A sixth image from 
March 2011 was obtained but found to be too affected by cloud cover to be useful in the project. 

The images were processed to correctly geo-reference them to orchard boundaries, remove any 
cloud artefacts, remove any potential edge-effects and to calculate a series of vegetative indices (VIs) 
from the satellite band information. In total there were 12 (VIs) calculated using various 
combinations of the 5 satellite bands (Blue, Green, Red, Red-edge and Near-InfraRed). The mean 
responses of all the VIs for each date were derived for each block within the orchards (KPINS). 
Information on orchard infection (at the KPIN level) was obtained from KVH Inc. and related to the 
block-level mean VI responses (i.e. in an infected orchard all blocks were considered to be infected). 

A regression tree analysis was used initially as a data-mining exercise before stepwise binomial 
logistic regression was used to model the disease response (Infected or Non-Infected) using the VIs 
at the 5 different dates (early October to early February). The December image (26/12/2010) was 
the best at discriminating between dead vines, infected (stressed) but not dead vines and healthy 
vines using the regression tree analysis. However, in the proper jack-knifed modelling exercise, the 
early October image (02/10/2010) was the best indicator of infected vines in the 2010/11 season. 
This image was obtained at a time when the canopy was actively growing but had not yet reached 
full closure. In contrast, a later October image (21/10/2010) taken around full closure and flowering, 
poorly discriminated between infected and non-infected vines. The early season growth rate 
appears to be very indicative of infection, however, the vine physiology (and canopy response) at 
flowering may masking the disease response. The VIs from the images obtained later in the season 
(15/01/2011 and 01/02/2011) were not particularly useful in the modelling and may reflect either a 
variable rate of disease progression and expression during the season or within season management 
effects on the canopy response. 

Further work is needed to better understand how the canopy response early in the season is 
affected by infection; however, early season images acquired before canopy closure appear to be a 
useful tool in identifying orchards where the disease expression is likely in the coming season. The 
utility of an early season image in disease modelling will assist in targeted sampling and proactive 
management of orchards within the current season. 

Many different vegetative indices were derived and used in this work. VIs that incorporated the 
green, red-edge and/or NIR bands appeared to be the best performed. Imagery with these bands 
should be preferred in future acquisitions. The temporal response of the VIs was also derived on a 
bock-level basis; however this information was not useful in identifying infected orchards, probably 
for the same reasons that the late season images were also poor predictors. 

There were some analysis issues identified in the project. Infection was recorded by the date of the 
positive laboratory result, rather than the date that the material was obtained from the orchard (or 
date that the disease was observed). Infection was also recorded at the KPIN level, but it was unclear 
if all bocks associated with a KPIN were infected at that time. At the start of the project the spatial 
data provided were poorly organised. We understand this situation now is much better. The project 
was also beset by contractual issues with the University of Sydney. 
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Final Report: V11261- Feasibility of Remote Sensing to Detect Psa-V Infected Vines or Vines at Risk 
of Psa-V Infection 

 
James Taylor and Brett Whelan, Precision Agriculture Laboratory, FAE, The University of Sydney 

 
INTRODUCTION 
 
Remote detection of Pseudomonas syringae pv. actinidiae (Psa) infection in kiwifruit vines and/or 
vines at risk of infection could assist in the management and control of this destructive plant 
pathogen. Multispectral remote sensing of plant pathogens, such as rice sheath blight has been 
previously demonstrated (Qin and Zhang, 2005). Remotely sensed imagery has also been effective in 
mapping and managing industry-wide pathogens, such as the Phylloxera threat to the grapevine 
industry of southern Australia (see http://www.healthyvines.com.au/Information.aspx). In these 
cases, remotely sensed images have been able to provide early detection of an infestation, which 
has promoted the rapid management/treatment of the disease. In New Zealand, the mapping of 
frost occurrence from satellite data has been used to determine sites where early autumn or late 
spring frosts are more likely to damage stonefruit trees, and subsequently predispose the trees to 
stone fruit blast (Pseudomonas syringae).  
 
Remote sensing could be used in several ways to assist with management of Psa.  

a) Identifying vines (orchards) that are ‘at risk’ of infection before they are infected. If plant 
stress affects the susceptibility of kiwifruit vines to infection then it is possible that the 
spectral signature from the canopy can identify vines/orchards that are under stress and 
more susceptible to infection (Jones and Schofield, 2008). This stress would be caused by an 
external factor (water stress, nutrient, disease pressure etc.) not directly associated with the 
Psa-V threat. This information could also be paired with other spatial information on existing 
sites of Psa-V infection and preferential distribution patterns for Psa-V (e.g. the direction of 
prevailing winds, overland water flow/runoff etc.) to assess the risk of infection. 

b) Identifying vines that are in the early stage of infection but asymptomatic to the human eye. 
The reflectance from leaf tissue in the red-edge and NIR parts of the electromagnetic 
spectrum (EMS) is much more sensitive to changes in plant health (compared to reflectance 
in the visible part of the EMS that humans can see). Therefore images that incorporate 
information in the red-edge and NIR and beyond are able to identify early stages of plant 
stress. If the stress is caused by Psa-V then it may be possible to identify the infection before 
it is fully expressed and ensure that the full range of management options is available.  

 
The potential for the spectral signature of the canopy to be affected by multiple 
environmental/physiological effects may pose some problems in direct identification of Psa-V 
infection. Multi-spectral (3-10 band) imagery in general has the ability to detect differences in 
canopy response, but lacks the resolution in the number of bands and width of the bands to directly 
determine the cause of the stress without some ground-truthing or a priori information. 
Hyperspectral imagery (20-200 bands) may be able to identify both the stress and the cause, 
however, this technology is currently considerably more expensive, not historically archived and 
computational more complex for analysis.  
 
If the spatial and spectral band resolution of satellite imagery proves insufficient to detect Psa-V in 
the early stages of infection then ground-based sensing techniques may be better suited to solving 
this problem. Sankaran et al. (2010) provide a recent review on the advanced techniques available 
for detecting plant diseases that can be used in the field or on field collected samples. 
 

http://www.healthyvines.com.au/Information.aspx
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The current project will use existing archived satellite sensory imagery collected from Te Puke to 
assess the feasibility of multispectral remote sensing to detect Psa-V infected vines, or vines at risk 
of infection. Several satellite monitoring systems are currently deployed to provide images of the 
Earth at various resolutions (ranging from >100 m to <2 m pixels). Imagery is routinely collected even 
if it is not ordered, creating large archives of data. The quality of this archived data is determined by 
the revisit time of the satellite(s) to a location and of the absence/presence of cloud cover. Of the 
commercially available satellite sensors, the Rapideye sensor has the best available archived time-
series of high-resolution imagery for the Te Puke region in the 2010-11 growing season. (Other 
sensors investigated included SPOT, Landsat, ASTER, Ikonos/GeoEYE and Quickbird/WorldView.). 
 
MATERIALS AND METHODS: 
 
Data 
Imagery 
Multispectral (5-band Visible-NIR) imagery from the Rapideye satellite was acquired from AAM for 
October 2nd 2010, October 21st 2010, December 26th 2010, January 15th 2011, February 1st 2011 and 
March 15th 2011. These were archived 16-bit images. The images were orthorectified and delivered 
at a 5 m pixel resolution. The details of the 5-bands in the multi-spectral images are provided in 
Table 1. 
 
The October 21st, 2010 image was chosen as a base layer (least cloud cover over the target area – Fig. 
1) and the other images were geo-rectificed to this image. The 16-bit geo-rectified images were 
mosaicked (if necessary) and converted into 8-bit imagery (resolution of the radiometric band 
information). There were three dates (October 21st, December 26th and March 15th) that spanned 
the greater Te Puke area to the west of the target survey area. For the other three dates the imagery 
was centred only on Pukehina (see Fig. 1). The late season March 15th image contained a large 
amount of cloud cover. It was hoped that there would be enough orchard response between the 
cloud cover to make this image useful. However, during the analysis process this was found not to be 
the case, and the results involving the March 15th image are not included in the report. (NB: All 
imagery, shapefiles and data tables - raw and corrected – are appended in digital form). 
 
Table 1: Details of the band information associated with the Rapideye imagery. 

Band No. Region Band Range (nm) 

Band 1 Blue 440-510 
Band 2 Green 520-590 
Band3 Red 630-685 
Band4 Red-edge 690-730 
Band5 Near Infrared 760-850 

 
Change Detection Analysis. 
A change detection analysis was performed by comparing the October 2nd, December 26th, January 
15th, February 1st and March 15th image with the October 21st image. This looked for gross 
differences between the images on a pixel by pixel basis. Effectively this identified pixels with cloud 
effects in the images. (NB. there are other ways to do this, e.g. using a supervised classification, but 
the difference between the cloud and ground response makes this a very simple way of identifying 
the cloud affected pixels). 
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Figure 1. True colour images of the Rapideye imagery available over TePuke-Pukehina during the 
2010-2011 growing season.  
 
Vector data 
Two vector layers (shapefiles) were received. A point file with information pertaining to the 
presence (or absence) of Psa-V in orchards was made available by Kiwifruit Vine Health Inc.. The Psa-
V information was linked to a KPIN identifier, a single centroid coordinate (x,y) location and the date 
of Psa-V confirmation (i.e. date of a positive test result, not the date of collection or observation). A 
polygon file of orchard block boundaries was also received from AgFirst (Brad Stevens). Polygons 
were identified by a KPIN identifier and, in most cases, a block ID as well. The polygon file had two 
issues – many overlain and redundant polygons and generally poor rectification. The polygon file 
was edited to try and remove the redundant excess polygons (generally polygons labelled ‘trelwyn’ 
or ‘draw’ were kept rather than the ‘import_zespri’). Polygons were also moved if needed to align 
more closely with the imagery. Where relevant, the individual polygons were assigned a new 
identifier consisting of the KPIN and Block ID (KPIN Block ID or KBI).  
 
Data manipulation 

October 2nd

October 21st

December 26th

January 15th

February 1st

March 15th
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Reclassing the Psa-V Response 
The Psa-V data was provided with an approximate date of confirmation (not date of collection). 
Table 2 shows the classification generated by KVH Inc. based on the timing of a positive Psa-V test 
and the total number of KBIs and KPINs that were recorded. For the modelling these groups were 
reclassified and simplified. Groups A, B and C were merged to form an ‘Early’ (2010-11) positive Psa-
V group. This corresponded with the period over which the imagery was collected. The D group may 
contain infections from 2011 but also from the new 2012-13 growing season. For this reason it was 
not included in the ‘Early’ group but designated as a ‘Mid’ period of infection. The E and F Groups 
would appear to be the result of 2012-13 infections and were designated as a ‘Late’ period of 
infection. Group G was retained as the ‘Control’ group with no infection.  
 
Table 2: Infection detection periods with the original classification from AgFirst and the 
reclassification for this analysis. The total number of KPINs and KBIs associated with the data are also 
displayed†. 

Grouping Date Range No of KPINs with 
positive PSa-V 

No of KBIs with 
positive PSa-V 

ReClassed 
Groupings 

A Nov 10 - Mar 11 1 4 Early 
B Apr - June 2011 2 4 Early 
C July - Sept 2011 66 288 Early 
D Oct - Dec 2011 207 915 Mid 
E Jan - Mar 2012 41 124 Late 
F Apr - June 2012 8 35 Late 
G Control (No Psa-V) 66 217 No 
† This is the total number of KPINs associated with the KVH Inc data which includes orchards outside of the image extent. These numbers 
will decrease when the Psa-V data is trimmed to the image extents. 

 
ISSUE: Date of collection would have been a much more useful measure than date of a positive test. 
Work was contracted initially in August 2011, with imagery time-series from the 2010-11 growing 
seasons. However, only 8 KBIs (3 KPINs of Grouping A and B) were actually formally identified in this 
time period. 
 
Derivation of vegetative indices 
A 5 m grid was generated over the entire survey area. This is the same resolution as the pixel 
imagery i.e. a grid point = a pixel. The area-wide grid file was trimmed to points that lay within the 
corrected orchard polygons (from Agfirst). A 12 m buffer was then applied to remove points that 
were located close to an orchard boundary (within 2.5 pixels). This should ensure that only points 
over the kiwifruit canopy are included in the final 5 m grid (point) file. The intent is to avoid imagery 
band information that may contain information associated with errors in the polygon alignment, 
geo-rectification and orchard effects such as roads or windbreaks. Figures 2 and 3 show examples of 
the points trimmed to the orchard boundaries and then with the buffer applied. Some small blocks 
have very little data left after this, e.g. some of the blocks in the yellow outlined orchard (KPIN) in Fig. 
3. These were trimmed later in the data manipulation process. 
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Figure 2: 5m grid cut to polygon boundaries Figure 3: 12 m buffer applied to give final grid 
 
The band information from each image was then extracted to the trimmed, buffered 5 m point file. 
Each grid point was given the attributes of the image pixels that it intersected with. Similarly, the 
attributes of the corrected orchard polygon file, including the KPIN and KBI identifiers, were assigned 
to each point based on the polygon that each point (pixel) was located within. Finally information 
relating to whether the pixel was affected by cloud cover was extracted to the points. The final point 
file therefore had coordinates (x,y), KPIN ID and KBI ID, band information from each of the 6 images 
and cloud cover for the 6 images. For some of the images (Oct 2nd, Jan 15th and Feb 1st) the point file 
contained points outside the imagery boundary. 
 
The 5 m grid spreadsheet of the band information was imported into R. A script was run to generate 
12 commonly used vegetative indices (VIs). These are summarised, with their formula, in Table 3. 
The VIs used various combinations of the 5 bands available from the Rapid-eye imagery, including 
the red-edge band (Band 4). Some of the VIs were originally developed to be derived from narrow 
band imagery. These are generally chlorophyll-based indices. They have been applied here to the 
broader bands of the Rapid-eye imagery to test if there is relevant information in these VIs for Psa-V 
detection. Recent work (Prof. A.A. Gitelson, University of Nebraka, pers. comm. Article submitted to 
the Agronomy Journal) has shown that these indices can be used effectively with broad-band 
multispectral imagery in broadacre crops. 
 
The resulting spreadsheet contained the x, y coordinates of the trimmed and buffered pixel, KPIN 
and KBI ID, 12 VIs from each image (6 image dates) and whether or not the pixel was affected by 
cloud cover or not. 
 
Extraction of mean response at the KBI level 
The mean VI responses for each date and mean cloud cover for each KBI were calculated. KBIs with 
less than 9 points (pixels) were omitted at this stage. The data was then subset into a ‘Season’ and 
‘Spring’ response. The ‘Season’ data set contained KBIs that were common to all the images from 
October 2nd, 2010 through to February 1st, 2011. This restricted the study area to Pukehina. The 
‘Spring’ data set contained KBIs that were common to the October 21st and December 26th images, 
which covered both Te Puke and Pukehina. (NB. The data from Pukehina in the Oct 21st and Dec 26th 
images is therefore common to both datasets). Blocks (KBIs) with more than 5% cloud cover were 
removed from both the Spring and Season data sets. Finally the Psa-V infection associated with the 
relevant KPIN was assigned to the mean KBI responses in both the Spring and Season spreadsheets. 
These formed the final data sets for analysis. Both datasets are provided as associated text files. 
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Table 3: Vegetative indices (VIs) derived from the extracted image band information. The VIs were 
calculated at a pixel-scale (5 m pixel). 

Name Abbrev. Formula Reference 

Simple Ratio SR NIR/Red Rouse et al., 1973 
Normalised Difference 
Vegetative Index 

NDVI (NIR - Red)/(NIR + Red) Rouse et al., 1973 

Green NDVI GNDVI (NIR - Green)/(NIR + 
Green) 

Gitelson and Merzlyak, 
1998 

Red-edge NDVI RENDVI (NIR - Red-Edge)/(NIR 
+ Red-Edge) 

Gitelson and Merzlyak, 
1994 

Modified Red-Edge NDVI modRENDVI (NIR – Red-Edge)/(NIR 
+ Red-Edge – (2 * 
Blue)) 

Datt, 1999 

Enhanced Vegetative Index EVI (2.5 *(NIR - Red))/(NIR 
+ (6 * Red) - (7.5 * 
Blue)+1)) 

Huete, et al., 1994 

Enhanced Vegetative Index 
2 

EVI2 (2.5 *(NIR - Red))/(NIR 
+ (2.4 * Red) + 1) 

Huete, et al., 1997 

Photosynthetic Vigour 
Ratio 

PVR Green/Red SpecTerra Systems, 1999 

Green Chlorophyll Index GCI (NIR/Green) - 1 Gitelson et al., 2003 
Red-edge Chlorophyll Index RECI (NIR/Red-Edge) - 1 Gitelson et al., 2003 
Triangular Vegetative Index TVI 0.5*((120*(Red - 

Green) – 200 * (Red-
Green))) 

Broge and Leblanc, 2000 

MERIS Terrestrial 
Chlorophyll Index 

MTCI (NIR – Red-Edge)/(Red-
Edge-Red) 

Dash and Curran, 2004 

 
 
ISSUES: There is a large discrepancy between the spatial resolution of the Psa-V data and the VI data. 
The Psa-V is only recorded at a KPIN level; however the majority of KPINs describe multiple blocks. 
There was no information available on whether a positive Psa-V result for a KPIN was attributable to 
all or only a subset of blocks (KBIs) within a KPIN. Some KPINs are associated with large areas (34 of 
the 391 KPINs had more than 10 blocks associated with them). The modelling could be done at the 
KPIN or KBI (Block) level. The block level was chosen. This increases the number of data points 
available for modelling, especially in images that had a smaller spatial extent (less KPINs captured) 
and/or cloud effects. Modelling at the KPIN level was performed initially. However, there seemed to 
be a mixed response in some KPINS (affected and unaffected blocks) which created problems when 
modelling with a smaller sampling size. By modelling at the KBI level, there will be some blocks 
assigned with a positive Psa-V KPIN (due to a positive result in another block) that may not have 
been affected at that time. Thus false positives are expected. The converse, a positive Psa-V in a KBI 
but a negative KPIN Psa-V is less likely to have been recorded in the data, i.e. false negatives should 
be less prevalent than false positives. Some KPIN data (and Psa results) were also missing 
geolocations.  
 
Data Analysis 
Analysis was performed separately on the ‘Season’ and ‘Spring’ data sets. Analysis was confined to 
KBIs (KPINs) with either an ‘Early’ (Infection) or ‘Control’ (Non-Infection) response i.e. data are 
confined to KBIs that were likely to have infection in the season when the imagery was collected and 
sites with no known infection as of the end of the 2012 season. The ‘Mid’ and ‘Late’ responses were 
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not used as there is uncertainty, particularly with the ‘Mid’ response, on the actual state of infection 
during the imagery acquisition period.  
 
Data-mining: Regression tree analysis 
As a first analysis, a regression tree partitioning was performed on an individual image basis. The 12 
VIs from each image were used to partition the variance between the ‘Non-Infection’ (‘Control’) 
class and the ‘Infection’ (‘Early’) class. The analysis was performed on a per date basis.  
 
This is a first look at the data to gain an understanding of the data structure. Although several splits 
(nodes) were applied to each date, only the first split is recorded and shown (Table 4). Of interest 
was how the different VIs were selected and chosen and how well the regression tree ‘fit’ the 
categorical response. An example regression tree for the best fit is shown in the Appendix. 
 
Modelling: Binomial Logistic Regression 
Binomial Logistic Regression (BLR) was used to model the categorical ‘Infection’ (Early) and ‘Non-
Infection’ (Control) Psa-V classes against the mean VI response within the KBIs. BLR was preferred to 
Discriminant Analysis as it more flexible in its assumptions, predominantly that predictors in the 
model (VIs) do not need to be normally distributed, linearly related or of equal variance (Tabachnick 
and Fidell, 1996). The BLR was performed in R using a jack-knifing approach for prediction and 
validation. 
 
In both the Season and Spring data sets the ratio of ‘Infection’:‘Non-Infection’ KBIs was skewed 
(~2:1). The ‘Infection’ data were subset to the same size as the ‘Non-Infection’ data (n = 133 or 380 
for the Season and Spring data sets). NB: This was done for each jack-knifing such that the Non-
Infection sites were common to each iteration but the chosen ‘Infection’ sites differed. The 
combined data (either 266 KBIs for the Season Data or 760 KBIs for the Spring Data) was then 
randomly split into training and test subsets. The test subset was ~20% of the original data. A 
stepwise approach was then used to determine the best model for a 1-, 2-, 3-, 4-, 5- and 6-
parameter BLR model on the training subset before the model was applied to the test subset. A 
maximum of 6 parameters was chosen to avoid over-fitting and to constrain the analysis to a 
method that would be sensible for industry application. The Chi2 value, percentage of positive 
predictions (%PP) (Infection as Infection and Non-Infection as Non-Infection), percentage of False 
Positive (%FP) (Non-Infection predicted as Infection) and percentage of False Negatives (%FN) 
(Infection predicted as Non-Infection) were recorded for each iteration based on the fit to the test 
data. The % of times each VI (including date) was selected in the models was also recorded. 
 
In evaluating the success of the imagery for monitoring Psa-V infection, the main interest is in the 
number of correct decisions but also in the False Negative percentage (%FN). The FN% indicates KBIs 
that were infected but were modelled as not-infected, i.e. escaped detection. The False Positive % 
(FP%) are the inverse, where stress symptoms are observed but not from Psa-V infection. 
 
Modelling: Random Forest Regression 
A Random Forest modelling approach was also applied to the same test and training data sets 
derived for the BLR (i.e. applied 100 times). This was trialled to test if there were non-linear 
combinations of the VIs that were useful for prediction. The BLR is a linear modelling process. Since 
the intent is to predict from the Regression Tree models, the Random Forest methodology was used 
(Breiman, 2001). Random Forests analysis is a more robust adaptation of Regression Trees analysis, 
thus more suited to deriving robust models for prediction. A classical Regression Tree analysis is 
more suited to data mining than data modelling.  
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The Random Forests models were restricted to a maximum of 5 splits and the end-nodes to a 
minimum size of 17. As for the BLR, the Chi2, %PP, %FN and %FP were calculated from the jack-
knifed results. The important predictors within the Random Forest modelling were also extracted. 
This analysis was performed in R using the randomForests package (Liaw and Wiener, 2002). The 
restriction to 5 splits was again chosen to avoid over-fitting and to constrain the Random Forest 
analysis to approximately the same parameterisation as the highest-order BLR models for 
comparison. 
 
Temporal statistics associated with the Vegetative Indices 
During the initial discussions on this project it was hypothesised that the temporal trend in the 
canopy response over the season may be indicative of Psa-V infection (or non-infection). For this 
reason, an effort was made to incorporate some information from the time-series, rather than just 
the individual ‘snap-shot’ imagery. 
 
For each image, the calculated VIs were converted into a relative response (0-1) for each pixel. The 
relative KBI response was then extracted for each KBI for each image used in the ‘season’ data (Oct 
2nd to Feb 1st). A linear model was fitted to each VI data set to model the response over time (Oct 2nd 
considered Day 1). The gradient (β) and fit (r2) were recorded for each VI in each KBI. The mean (µ) 
and standard deviation (σ) of each of the VI responses in each KBI over the 5 images was also 
extracted. These statistics (β, r2, µ and σ) were analysed using the exploratory regression tree 
analysis and initially incorporated into the BLR and RF models described above. However, the data 
mining and modelling of the Psa-V data did not show any response to these statistics. Consequently, 
these varaibles have been omitted for the results and discussion section. A brief discussion on the 
possible reason for this result is given in the general discussion. 
 
RESULTS AND DISCUSSION 
 
Data Mining – Regression tree (using the Season Data) 
There was no clear pattern in the preferred VIs over the imagery dates. However, indices that 
incorporated information within the green band (520-590 nm) and NIR appeared to be preferred. 
For example, the GNDVI was preferred to the RENDVI or conventional NDVI for the December 26th 
image. The PVR, TVI and GCI ratios that were selected at the first split on other dates also include 
the green response. The December 26th image was the best fit in sthe Regression Tree Analysis 
(actual tree shown in the Appendices). Interrogating this response, it appears that the infected vines 
at this stage of the season have reduced or absent canopy vigour. The KBIs in the tail (< 0.65) 
probably contain either dead or dying vines (Fig 4). This could be verified by checking if the identified 
KPINs in the histogram tail were actual orchards with very early infections/mortality (KPINs 
identified in the caption of Fig. 4). 
 
Table 4: Splits associated with a regression tree analysis that used information from only ONE date. 
The main intent is to see if there is a pattern to the variables selected and the % of misclassified. NB. 
This is a data mining exercise and results are not always directly transferable to a data modelling 
process.  

Image 
Date 

First Split 
VI 

Rule for Early Early-
Early 

Early-
NoPsa 

NoPsa-
NoPsa 

NoPsa-
Early 

Misclassed 
% 

Oct02 PVR PVR < 1.49 130 6 93 84 28.75 
Oct21 TVI TVI < 5743 119 19 80 95 36.42 
Dec26 GNDVI GNDVI < 0.746 183 18 81 31 15.65 
Jan15 EVI EVI < 2.6423 140 9 90 74 26.52 
Feb01 GCI GCI < 5.979 127 5 94 87 29.39 
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Figure 4: Left: Histogram of the GNDVI response from the Dec 26th image for the KBIs associated 
with the Early and Non-Infected groupings (Table 2). The dotted line indicates the splitting point 
from the regression tree analysis. Right: The data split into the two categorical responses, showing 
that the tail is associated with early infected orchards. The KPINs associated with these points (KBIs) 
(GNDVI < 0.65) are 1190, 1825, 1879, 1883, 2067, 2357, 2754, 3211, 6322, 6689, 7078, 8286, 9510 
 
There is some indication of a bimodal population in the GNDVI response > 0.70. However, some of 
the blocks identified as infected are still exhibiting strong canopy vigour at this stage. This may have 
to do with the type and stage of infection (but neither was recorded in the data supplied). Likewise, 
some non-infected blocks have lower canopy vigour (health) (GNDVI < 0.75), which is possible due to 
other stresses or management not related to Psa-V. 
 
The VIs from the later season images (Jan 15th and Feb 1st) or earlier season images (Oct 2nd and Oct 
21st) were not as effective as partitioning the variance in the Infection response as the Dec 26th 
image. For the later season imagery, this may be due to additional ‘noise’ being introduced from 
mid-season management and/or the possibility that orchards identified as infected early in the 
season have been removed or are dead. This may cause them to exhibit a strong plant response 
from the renewal of ground cover in the orchard that is visible from an aerial/space platform. The 
imaging system is not able to distinguish between different species – only if there is a vigorous or 
poor plant response in the pixel. The early season imagery may be difficult to interpret due to 
differential early season growth rates and phenology stages (e.g. flowering) making the VI signal 
more difficult to interpret. 
 
The strong difference between infected (and affected) vines midseason is expected, especially if the 
disease is causing vine mortality. From a management perspective, confirming with remote sensing 
what can be seen visually is of little value. It is preferable to be able to model an early (non-visible) 
change in plant response. The bimodal distribution in the GNDVI above 0.70 (Fig. 4) indicates that 
this may be possible. 
 
Data Modelling – Binomial Logistic Regression (BLR) and Random Forests (RF)  
The following results relate to the fits of the actual vs. predicted response from the jack-knife 
modelling of both BLR and RF. The BLR is modelled with 1-6 parameters (variables) while the RF is 
modelled with a maximum of 5 splits. Results are presented from both the the Seasonal and Spring 
datasets.  
 
Season Data 
The data was subset to produce evenly weighted positive (Infection) and negative (Non-Infection) 
responses. Under these conditions a random allocation of predictions should generate on average 
50% of predictions to be correct. The results from the modelling (Fig. 5) show that the BLR correctly 
predicts between 75-79% of the time on average in the Season dataset. The incorporation of the 
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imagery VIs therefore improves the prediction of infected and non-infected orchards. Increasing the 
number of parameters in the BLR from 1 to 2 increased the quality of prediction, however further 
increases to 3-6 parameters did not significantly change the fit (Chi2) or the number of correct 
predictions made. For management, the most important parameter is perhaps the percentage of 
False Negatives (%FN). This statistic indicates how often the model predicts an infected orchard as 
being non-infected. In this case, an infected orchard would not be identified as a problem. The 
inverse error is less important if the precautionary principle is applied. The percentage of False 
Positives (%FP) indicates how often a non-infected orchard is predicted as being infected. As 
indicated earlier, there are other factors (other disease/pest pressure, environmental pressure, 
management effects etc.) that produce a decrease in canopy health (vigour), which will mirror the 
response of Psa-V on the canopy. There is also a potential recording error from the recording of 
infection at a KPIN and not a block (KBI) level, which may increase the %FP. Therefore, False 
Positives are expected and the model results show that there is a higher proportion of FP predicted 
as hypothesised. Sampling in these orchards will verify if the depressed canopy response is due to 
Psa-V or an alternate pressure/error. With the precautionary principle applied it is better to verify 
that these orchards are not Psa-V orchards. The 2-parameter BLR model produced the lowest %FN. 
However, the quality in this prediction was at a cost in the %FP made by the 2-parameter BLR model.  
 

  

 
Figure 5: Plots of the Chi2, percentage of False Negatives, False Positives and Correct Predictions 
from the Binomial Logistic Regression and Random Forests modelling on the Season dataset (all 
available images). The circle indicates the mean response across 100 jack-knifed iterations while the 
bars indicate the upper and lower 95% confidence levels from the jack-knifed results. 
 
The random forest approach was used to test if there was a non-linearity involved that should be 
modelled. The RF was restricted to 5 splits (i.e. parameterised similar to the 5- and 6-parameter BLR). 
The overall predictive power was slightly better than the BLR but this was due to better predictions 
of correct outcomes and fewer FP. The FN outcome from the RF was worse than all but the 1-
parameter BLR. This is arguably the statistic that should be minimised. On these results it appears 
that there is no advantage to pursuing a non-linear modelling approach.  
 
Selected predictors in the BLR jack-knifing. 
The 2-parameter BLR appeared to be the best model from the jack-knifing metrics. Table 5 shows 
which variables (VIs) were most commonly selected in the 1 – 4 parameter BLR models. The 
variables within the BLR-2 model were dominated by VIs derived from the early season (Oct 2nd) 
image. The first selection was nearly always the PVR layer. Even when the PVR from Oct 2nd was 
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chosen as the first variable in the stepwise the process, the second variable was usually another VI 
from Oct 2nd.  
 
Table 5: The VIs and associated date that were selected in the BLR jack-knifing. Only the results for 
the 1-4 parameter models are presented (The 5 and 6 were not superior and have a wide range of 
variables selected).  

Parameters Variable and percentage of time it was selected at that level 

1 PVR Oct 2
nd

 (92%); GCI Feb 1
st

 (7%); 1 others at 1% 

2 RENDVI Oct 2
nd

 (32%); RECI Oct 2
nd

 (20%); GNDVI Oct 2
nd

 (18%); Mod 
RENDVI Oct 2

nd
 (13%); MTCI Oct 2

nd
 (8%); 5 others at <= 4% 

3 PVR Feb 1
st

 (39 %); GCI Feb 1
st

 (28%); EVI Dec 26
th

 (23%); 5 others at 
<= 5% 

4 EVI Dec 26
th

 (47%); TVI Feb 1
st

 (20%); GCI Feb 1
st

 (10%); 12 others at 
<= 5% 

 
The VIs from the Dec 26th image were not selected. As discussed previously, the December response 
may be spread across 3 different responses – dead/dying, infected and healthy. The ‘tail’ in the 
histogram (Fig. 4) may be causing problems with the modelling. The main VIs chosen within the RF 
models are given in the Appendices. In the RF model the December 26th VIs are more dominant, 
perhaps because the RF algorithm is better able to handle the tri-modal response.  
 
The apparent value of the October 2nd image indicates that infection can be identified with a 
reasonable accuracy from the early season response, which is a very promising finding. In early 
October the vine canopy is growing rapidly and approaching full closure but is not at full closure. 
Infected vines would appear to be either retarded in their cane/leaf development and/or in the 
health (chlorophyll content) of the leaves, leading to a lower PVR (VI) response. The histogram of the 
PVR data from Oct 2nd that is used in the modelling is shown in Figure 6. Again a bimodal distribution 
is evident, with lower PVR values generally indicative of infected orchards. The ‘tail’ evident in the 
GNDVI histogram from Dec 26 is not evident, probably because the badly affected orchards are still 
developing at this stage and have yet to ‘collapse’.  
 

 
Figure 6: Histogram of the PVR response within KBIs from the October 2nd Image - restricted to the 
Early and Non-Infected data (Table 2). The bimodal distribution is clearly illustrated. Infected vines 
are typically located in the range of 0.9 – 1.4. 
 
Spring Data (Oct 21st and Dec 26th only) 
This is the same analysis as the previous section applied only to the October 21st and December 26th 
image extended over the Te Puke as well as the Pukehina orchards. 
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Figure 7: Plots of the Chi2, percentage of False Negatives, False Positives and Correct Predictions 
from the Binomial Logistic Regression and Random Forest modelling of the Spring dataset (Oct 21st 
and Dec 26th). The circle indicates the mean response across 100 jack-knifed iterations while the bars 
indicate the upper and lower 95% confidence levels from the jack-knifed results. 
 
These results show a similar trend as the ‘Season’ results. The 2-parameter BLR improves the model 
fit (Chi2) but adding more parameters beyond this does not indicate any improved prediction power. 
The 1-parameter model has the lowest percentage of False Negatives (note this is a higher 
percentage than those reported earlier), but the highest False Positives (analogous to the 2-
parameter BLR model for the Season data). The main VIs selected in the 1-parameter BLR were GCI 
Dec 26th (87%) and RECI Dec 26th (13%). All variables selected in the jack-knifing process for the 1, 2 
and 3-parameter BLR models were from the December 26th image. This again indicates the lack of 
value of the late October (21st) image. Since the models are only relying on the December response 
it is not surprising that there is little value in the higher-parameter models. During data-mining, the 
regression tree (on all data) identified the GNDVI ratio as dominant (Section 1). The BLR indicates 
that the GCI or RECI ratios are the best predictors. These are similar indices and again indicates a 
potential benefit to having the green and red-edge response (as well as the NIR) when imaging the 
canopy. 
 
General Discussion 
The Psa-V infection in kiwifruit can occur either superficially or systemically. The former relates to 
infection on the foliage, which is characterised by leaf spotting as the vine attempts to limit infection 
and eventually a systemic infection. The latter relates to infection within the vascular tissue, which 
leads to vine death. The result is that the progression of the disease may proceed in different forms 
and at different rates; this differential development makes it hard to separate out the response as 
the season develops. However, the early season response to the disease appears to be more stable 
and therefore more useful.  
 
The October 21st image results 
The imagery acquire soon after canopy closure and around flowering (Oct 21st image) was less useful 
than the images acquired before (Oct 2nd) or after (Dec 26th) this date (for both the Season and 
Spring datasets). It is difficult in this preliminary study to know if this is a result of full canopy closure 
(and the difference in Oct 2nd is due to a differential rate of canopy development) or a physiological 
response associated with flowering that alters the canopy (leaf) reflectance. Studies on how 
different stages of development affect canopy and canopy reflectance would be useful (for 
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understanding the response relate to the disease and for general understanding of how to deploy 
canopy sensors in kiwifruit). 
 
Time-series analysis 
A time-series of images was obtained for two reasons: i) to identify if there is a preferred time (stage 
of phenology) and ii) to determine if there the trend in the temporal canopy response was useful in 
identifying the disease. The temporal statistics were not useful in the modelling process and have 
not been presented. The hypothesis is that the expression of the disease follows no pattern with 
vine growth or climatic conditions, and may occur at different stages of growth. This makes it 
difficult to identify a stable temporal pattern in the evolution of the disease. The temporal 
vegetation response is also affected by within-season management and the potential for a 
background vegetation response in affected orchards. 
 
CONCLUSIONS 
 
The early season development of the vine canopy was a strong indicator of Psa-V infection. 
Consequently, low vigour responses in imagery around the start of October could be used to identify 
and target sampling and verification of disease spread. Later in the season, interpreting the canopy 
response is more complex, in part due to management and also a differential rate of expression in 
disease vines. The reason for the bimodal canopy response early in the season is likely to be Psa-V 
related, however, ground-truthing is required. Vegetative indices that incorporate the reflectance in 
the green portion of the electromagnetic spectrum appeared to work the best. The Red-edge 
response also was useful and may be preferable to the collection of the blue response. 
 
Analysis and interpretation of remote-sensed imagery would be facilitated by having orchard data 
collected with better spatial and temporal information. In particular, the collection of information 
pertaining to blocks (or maturity areas) rather than enterprise (orchard) level data and data on the 
date of infection observed (visual or sample taken) rather than the date of a positive laboratory test. 
Information on the severity and/or type of infection when identified (internal (vascular), external 
(leaf) etc.) would help with the interpretation of the imagery and possible allow better modelling of 
the differential disease response. 
 
A preliminary time-series analysis indicated no value to this approach, however this was preliminary 
and with better temporal (and spatial data) this may be worth revisiting. 
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APPENDICES: 
 

 
An example of regression tree analysis applied to the Early and No Infected Group. The categorical 

data is partitioned according to the mean response within each KBI in the December 26th image. The 
primary split was made based on the GNDVI response. A 2 (left) and 3 (right) split solution is shown 

here (very similar results for both explaining ~ 50% of the variance) 
 

Data Mining - Importance of variables from the Random Forestmodelling. 

      
 
 

Selected predictors in the BLR jack-knifing. 
Season: 
1: PVR Oct 2

nd
 (92%); GCI Feb 1

st
 (7%); 1 others at 1%  

2: RENDVI Oct 2
nd

 (32%); RECI Oct 2
nd

 (20%); GNDVI Oct 2
nd

 (18%); Mod RENDVI Oct 2
nd

 (13%); MTCI Oct 2
nd

 
(8%); 5 others at <= 4% 
3: PVR Feb 1

st
 (39 %); GCI Feb 1

st
 (28%); EVI Dec 26

th
 (23%); 5 others at <= 5% 

4: EVI Dec 26
th

 (47%); TVI Feb 1
st

 (20%); GCI Feb 1
st

 (10%); 12 others at <= 5% 

 
Spring Data (Oct 21st – Dec 26th only): 
1: GCI Dec 26

th
 (87%); RECI Dec 26

th
 (13%) 

2: PVR Dec 26
th

 (77%); NDVI Dec 26
th

 (20%); 2 others at <= 2% 
3: GNDVI Dec 26

th
 (41%); EVI2 Dec 26

th
 (22%); RENDVI Dec 26

th
 (12%); Mod RENDVI Dec 26

th
 (9%); 6 others at 

<= 4% 
4: RENDVI Dec 26

th
 (31%); TVI Dec 26

th
 (25%); PVR Oct 21

st
 (14%); 9 others at <= 9% 

 
 
Selected nodes in the RF jack-knifing. 
Season: 
1st Split: PVR Oct 2nd (41%); GCI Dec 26th (22%); GNDVI Dec 26th (21%); GCI Feb 1st (7%); 

GNDVI Feb 1st (6%) 
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2nd Split:  GNDVI Dec 26th (32%); PVR Oct 2nd (20%); GCI Dec 26th (19%); GCI Feb 1st (14%); 6 
others at <= 5% 

3rd Split:  GNDVI Dec 26th (27%); GCI Dec 26th (22%); GCI Feb 1st (19%); PVR Oct 2nd (14%); 6 
others at <= 6% 

 
Spring Data (Oct 21st – Dec 26th only): 
1st Split:  GCI Dec 26th (82%); GNDVI Dec 26th (18%) 
2nd Split: GNDVI Dec 26th (18%); GCI Dec 26th (81%) 
3rd Split: RECI Dec 26th (80%); RENDVI Dec 26th (15%) 
4th Split: RENDVI Dec 26th (74%); RECI Dec 26th (19%) 
(The selected variables are alternating. All but one model had GCI and GNDVI from Dec 26th as the 
first two nodes in the tree structure. Nodes 3 and 4 were either RECI or RENDVI.) 

 
 

 


