Whole genome sequencing and the *Pseudomonas syringae* pv actinidiae outbreak in New Zealand kiwifruit

Russell Poulter

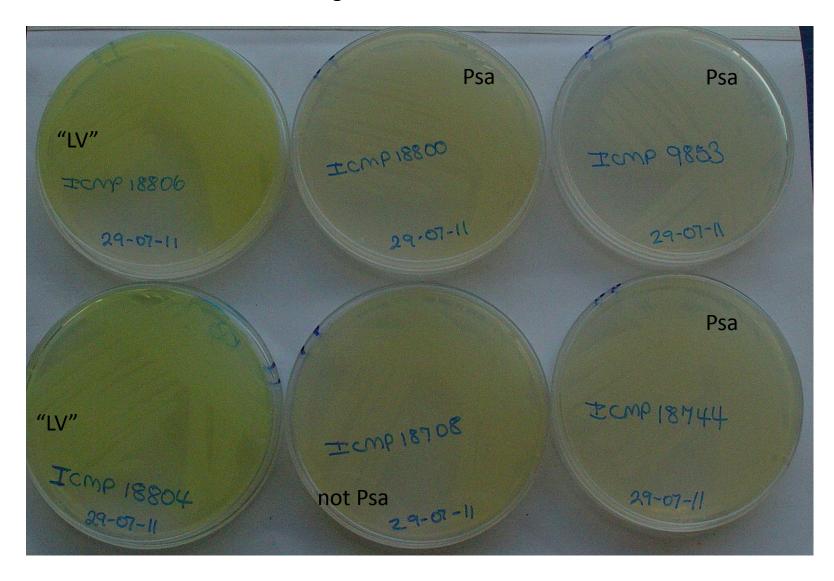
russell.poulter@otago.ac.nz

Friday 5 November 2010, a bacterial infection was discovered on a New Zealand kiwifruit vine.
Testing confirmed the vine was infected with *Pseudomonas syringae* pv *actinidiae* (Psa).

Recorded since 1989 in Japan

First confirmed in 1992 in Korea

Psa was first documented in Italy in 1992


In 2008 the symptoms of Psa in Italy became much more dramatic (attributed to the presence of a more virulent form).

The first Psa infection in France was identified in 2010.

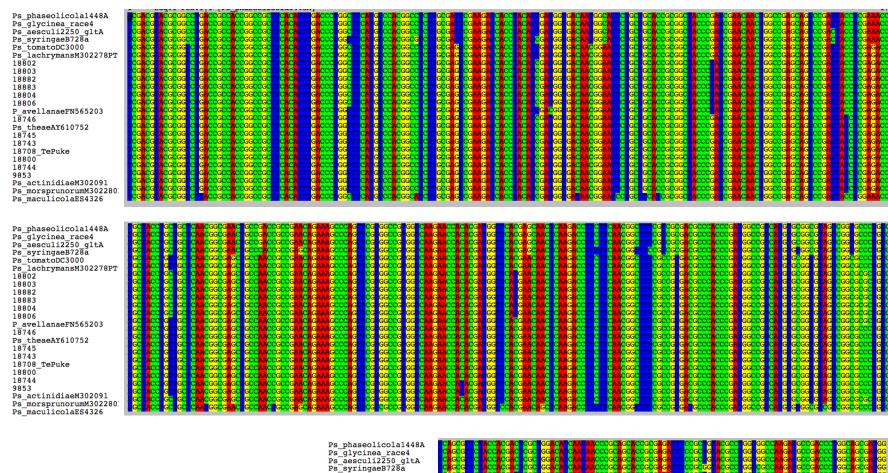
Psa has been reported in Portugal and, more recently, in Chile.

Anecdotal evidence suggests Psa has also been present in China for some time
-KVH information

Fluorescence of various strains on King's B medium

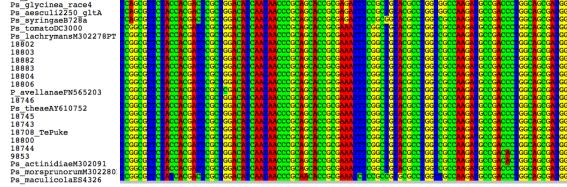
Addressing the question of what are the LV strains?

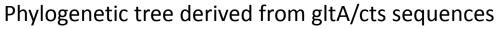
Multi Locus Sequence Typing (MLST)


amplified 500-600bp regions from 4 different genes with PCR

gltA (or cts, citrate synthase) gapdh (glyceraldehyde-3-phosphate dehydrogenase) gyrB (DNA gyrase B) rpoD (sigma factor 70)

-gene regions were those used by others studying *P. syringae* pathovars




Alignment of gltA gene region

"LV" or PsD strains

Psa strains

9853 86 Ps actinidiaeM302091 18800 18708 18743 18745 Ps theaeAY610752 18746 18744 Ps morsprunorumM302280 PavellanaeFN565203 18802 18803 "PsD" strains 100 18882 18883 18804 18806 82 | Ps tomatoDC3000 Ps lachrymansM302278 Ps syringaeB728a Ps aesculi2250 Ps phaseolicola1448A Ps glycinea race4 Ps maculicolaES4326

Maximum likelihood tree made using MEGA5
-only gltA locus
100 bootstrap replicates

BLAST®

Basic Local Alignment Search Tool

NCBI/ BLAST/ blastn suite/ Formatting Results - 60SESEAX011

s6_2101_11498_36340

 Query ID
 Icl|41977

 Description
 s6_2101_11498_36340

 Molecule type
 nucleic acid

Database Name nr Description All

GenBank+EMBL+DDBJ+PDB sequences (but no EST, STS, GSS,environmental samples or phase 0, 1 or 2 HTGS sequences)

Program BLASTN 2.2.25+

Graphic Summary

Query Length 101

Distribution of 1 Blast Hits on the Query Sequence

Descriptions

Legend for links to other resources: UniGene ☐ GEO ☐ Gene Structure ☐ Map Viewer ☐ PubChem BioAssay

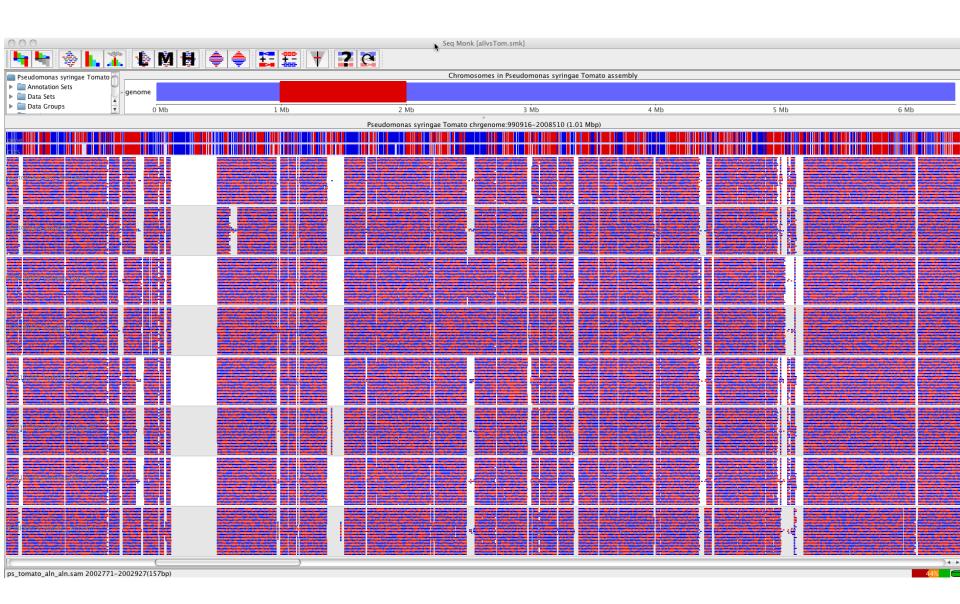
Accession	Description	Max score	Total score	Query coverage	<u>E</u> value	Max ident	Links
AE016853.1	Pseudomonas syringae pv. tomato str. DC3000, complete genome	<u>171</u>	171	100%	2e-41	97%	

Alignments

>gb]AE016853.1| \square Pseudomonas syringae pv. tomato str. DC3000, complete genome Length=6397126

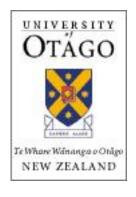
Features in this part of subject sequence:
ABC transporter, ATP-binding protein

Score = 171 bits (92), Expect = 2e-41
Identities = 98/101 (97%), Gaps = 0/101 (0%)
Strand=Plus/Minus


 Query
 1
 CTGGTAAAAGGCATCGTCGGCTACAGCCCACTGCAATCGGGCAGCATTCTGGTCGACAAC
 60

 Sbjct
 1493312
 CTGGTCAAAAGGCATCATCGGCTACAGCCCCCTGCAATCGGGGGAGCATTCTGGTCGACCAAC
 1493253

 Query
 61
 CGCGAGCATGCAATTGGCACCCCGCGCGATTCGCATCAGTT
 101


 Sbjct
 1493252
 CGCGAGCATGCAATTGGCACCCCGCGCGATTCGCATCAGTT
 1493212

All 8 new genomes aligned in the region 1-2Mb of the P. s. tomato DC3000

Searching for copper or antibiotic resistance factors in the Psa genome

Query	Hit	Exp()
AY533312.1 - Psa strA	**No Hit**	
AY997127.1 - Psy strB	**No Hit**	
AEAL01000410.1 - Psa M302091 rpsL	>IL_6_1_24 size=40970 cov=185.182	9.00E-68
AB033419.2 - Psa pPaCu1 copA	>IL_6_1_33 size=60420 cov=136.913	0.00E+00
AB033419.2 - Psa pPaCu1 copB	>IL_6_1_33 size=60420 cov=136.913	2.00E-82
AB033419.2 - Psa pPaCu1 copC	**No Hit**	
AB033419.2 - Psa pPaCu1 copD	**No Hit**	
PSPTO_4303 - Pseudomonas syringae pv. tomato DC3000 mexA	>IL_6_1_23 size=41320 cov=189.599	0.00E+00
PSPTO_4304 - Pseudomonas syringae pv. tomato DC3000 mexB	>IL_6_1_23 size=41320 cov=189.599	0.00E+00
PSPTO_4305 - Pseudomonas syringae pv. tomato DC3000 oprM	>IL_6_1_23 size=41320 cov=189.599	0.00E+00
PSPTO_2646 - P. syringae tomato DC3000 tetR	>IL_6_1_6 size=121055 cov=107.162	2.00E-67
83656969 - gb DQ316137.1 Pseudomonas sp. SO-A5-26 partial oxytetracyclineR (tetC)	**No Hit**	
239829516 - gb FJ950709.1 Pseudomonas sp. c163 partial tetC	>IL_6_1_113 size=16424 cov=110.521	2.00E-03
HM804085.1 - 861-2060 Pseudomonas aeruginosa plasmid R1033, tetA	>IL_6_1_74 size=22455 cov=176.691	1.00E-07
AF133140.1 - 757-1932 Pseudomonas sp. pPSTG2 tetracycline resistance protein (tetG)	>IL_6_1_74 size=22455 cov=176.691	2.00E-07

People:

Russell Poulter Margi Butler

Becky Laurie Les McNoe

Iain Lamont

Lois Martin Mik Black

Peter Stockwell

Funds:

Taskforce Green (Michael Franks, Seeka; Grant Eynon, Eastpack)
Department of Biochemistry, University of Otago

With the NZ outbreak, Kiwifruit Vine Health Inc (KVH) set up in December 2010.

KVH is an independent organisation to lead the kiwifruit industry response to the Psa incursion.

Total returns to growers in 2010/11 were \$883.3 million. In 2010/11 ZESPRI's net profit fell from \$25.9 million to \$7.3 million.

The fall was primarily due to contributing \$12.9 million to the response to Psa in New Zealand.

Canker showing white and red exudate.

http://www.batteriosi.it/

Kiwifruit rivals join forces to fight Psa

Seeka Kiwifruit Industries and EastPack launched a research initiative called "Taskforce Green," beginning with a meeting of scientists in Te Puke in June 2011.

The Taskforce Green group is comprised of a large range of participants from the academic, diagnostic and commercial research fields and hoped to find a novel cure for the disease

Taskforce Green

Michael Franks, Chief Executive, Seeka Grant Eynon, Deputy Chairman, EastPack Russell Poulter, University of Otago Iain Lamont, University of Otago Margi Butler, University of Otago Clint Wall, Seeka David Ackerley, Victoria University Janine Copp, Victoria University Matthew Storey, Victoria University Jerome Demmer, Halcyon Bioconsulting Limited John Aitken, Christchurch John MacKay, dnature, Gisborne Shalinee Dowlut, Verified Lab Services (Seeka) Terry Cooney, Hamilton Jonathan Cutting, Seeka Lucia Burt, Seeka Murray Judd, Seeka Peter Mourits, Seeka Peter Weaver, Seeka

PCR detection test available (Rees-George et al., 2010, Plant Pathology 59, 453–464)

PCR primers complementary to a region of the 16S–23S rDNA internal transcribed spacer (ITS) region

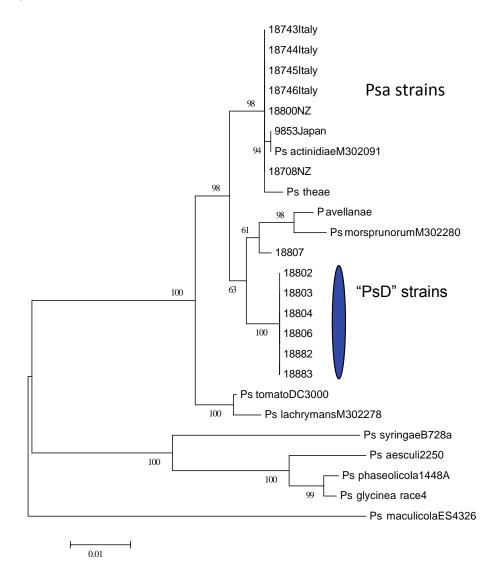
Amplified a DNA fragment from strains of *P. syringae* pv. *actinidiae*, but not from 56 strains of bacteria from six genera and 17 species (except for a strain of the tea pathogen, *P. syringae* pv. *theae*)

Assay was adapted for real-time PCR

Two kinds of Psa described, Psa-V and Psa-LV (both amplified with diagnostic test) Psa-V at first confined to the Te Puke region

"Psa-LV" found in the South Island and Gisborne Sometimes referred to as the "Asian" strain

31 August 2011


Psa Update

- Psa is confirmed on 319 orchards across New Zealand.
- 279 Psa-affected orchards (87%) are in the Te Puke region.
- 222 orchards are identified with Psa-V (virulent).
- Psa-V orchards are all within the Priority Zones.
- The Priority Zones have Psa and non-Psa affected orchards.

"PsD" strains are not *P. syringae* pv *actinidiae* (Psa)

We now refer to these strains as "PsD" to emphasise that they are not part of the outbreak

Maximum likelihood tree made using MEGA5 All 4 loci (gltA, gyrB, gapdh, rpoD) 100 bootstrap replicates

Relief for kiwifruit industry

By Owen Hembry

5:30 AM Thursday Aug 25, 2011

Print

nzherald.co.nz

The bacterial disease threatening the kiwifruit industry is not as widespread as thought, says listed company Seeka Kiwifruit Industries.

Seeka said research conducted at
Otago University under the
TaskForce Green Network - a
commercially funded research
initiative by Seeka and EastPak had shown that one of the two
strains of Pseudomonas syringae pv
actinidiae (Psa) thought to be in
New Zealand was only distantly

Bacterial disease threatening kiwifruit industry not as widespread as thought, says Seeka Kiwifruit Industries. Photo / Supplied

related to the disease and was not a danger to the industry.

It had been thought there were two strains of the disease in New Zealand – one a virulent type restricted to the Bay of Plenty and another which was also in Hawkes Bay, Golden Bay and Motueka. Researchers had found differences in the genomic make-up of the two strains and believed there was now only one strain in the country – the virulent type.

"As the Psa V [virulent strain] is still limited to the Bay of Plenty, it's still worth considering the possibility of completely eradicating the pathogen," Seeka said.

Seeka chief executive Michael Franks said it was a stunning discovery which would help the industry develop a solution.

"Because we've got the genomic sequence just about done, the team should be able to focus on exactly what we've got to do to deal to it."

Kiwifruit disease outbreak spreading

 Antibiotic vine spray 'crazy'

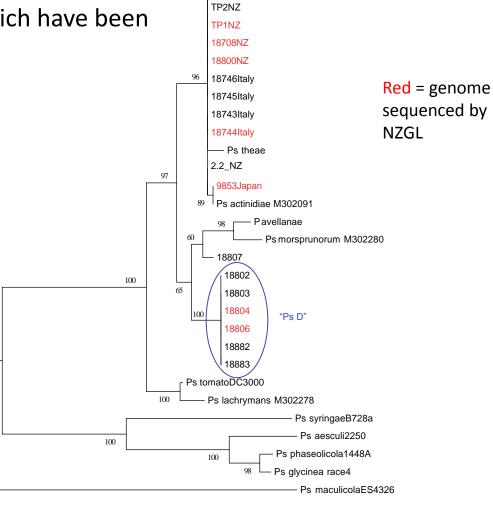
Related Tags

- Agriculture
- Farming
- Seeka Kiwifruit Industries Limited

your news

Be part of the news. Send pics, video and tips to nzherald.

Send »


Pseudomonas syringae pv. actinidiae genome sequencing projects:

strain name	origin	sequenced by
M302091	Japan	Univ. North Carolina, Chapel Hill
CRAFRU8.43	Italy, Latina, 2008	Università di Udine, Italy
NCPPB3739	Japan, 1984	Università di Udine, Italy
NCPPB3871	Italy, 1993	Università di Udine, Italy

Several strains from Japan, Korea and New Zealand are being sequenced at the University of Toronto by David Guttman in association with Prof. Paul Rainey (Massey) and Plant & Food. They probably include strains of "Psd".

Phylogenetic tree of *Pseudomonas syringae* pathovars including strains which have been sequenced by NZGL at Otago

0.01

6.1_NZ

3.1_NZ

4 loci: gltA, gyrB, gapdh, rpoD concatenated maximum likelihood method, 100 bootstrap replicates

Strains sequenced by NZGL in the Department of Biochemistry, University of Otago

ICMP 9853 Japan 1984

ICMP 18708 Te Puke, Bay of Plenty Nov. 2010

ICMP 18800 Paengaroa, Nov. 2010

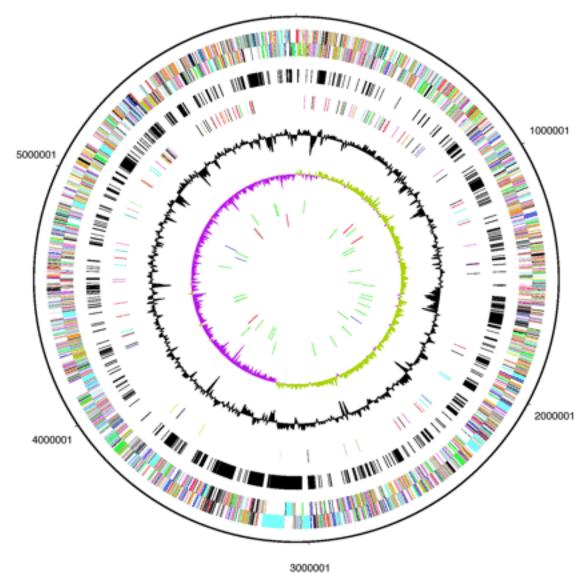
ICMP 18744 Italy, 2008

6-1 Te Puke, July 2011

TP1 Te Puke, 2011

ICMP 18804 Te Puke, Nov. 2010 "PsD" ICMP 18806 Pongakawa, Nov. 2010 "PsD"

Comparative genomics


Aligning the new genome sequences with the most closely related fully sequenced and annotated *P. syringae* pathovar: *P. syringae* pv *tomato* DC3000

80% of our Psa sequences are found in the Ps tomato DC3000 sequence

Of the 20% not in Ps tomato DC3000, many are represented in M302091, the Japanese Psa strain sequenced in North Carolina

There are some sequences in our dataset that do not occur in either Ps tomato DC3000 or Psa M302091

There are numerous sequences present in our Psa dataset that are absent from the our PsD dataset. These should form good candidates for Psa-specific PCR in the New Zealand context. Comparison of the complete genome sequences of *Pseudomonas syringae* pv. *syringae* B728a and pv. *tomato* DC3000

Pseudomonas genetic diversity

Table 1. General features from completed Pseudomonas genomes

Species/strain	Size*	% G+C*	Genes [†]	% coding	tRNA [†]	rRNA [†]	Released	GenBank	Reference
P. aeruginosa									
PAO1	6264404	66.6	5671	89.8	63	13	13/09/2000	AE004091.2	Stover et al. (2000)
PA7	6588339	66.4	6396	90.1	65	12	05/07/2007	CP000744.1	Roy et al. (2010)
UCBPP-PA14	6537648	66.3	5994	89.8	63	13	06/10/2006	CP000438.1	Lee et al. (2006)
LESB58	6 601 757	66.3	6026	88.9	67	13	24/12/2008	FM209186.1	Winstanley et al. (2009
C3719	6222097	66.5	5696	86.6	40	6	04/01/2006	NZ_AAKV000000000 [‡]	Mathee et al. (2008)
PA2192	6905121	66.2	6203	85.5	44	2	04/01/2006	NZ_AAKW000000000 [‡]	Mathee et al. (2008)
P. entomophila									
L48	5888780	64.2	5293	89.8	78	22	10/05/2006	CT573326.1	Vodovar et al. (2006)
P. fluorescens									
Pf0-1	6438405	60.6	5741	90.0	73	19	07/10/2005	CP000094.2	Silby et al. (2009)
Pf-5	7074893	63.3	6144	88.7	71	16	30/06/2005	CP000076.1	Paulsen et al. (2005)
SBW25	6722539	60.5	6009	88.3	66	16	09/01/2008	AM181176.4	Silby et al. (2009)
P. mendocina									
ymp	5 072 807	64.7	4730	90.7	67	12	20/04/2007	CP000680.1	Unpublished
P. putida									
F1	5 959 964	61.9	5423	89.9	76	20	31/05/2007	CP000712.1	Unpublished
GB-1	6078430	61.9	5515	90.2	74	22	05/02/2008	CP000926.1	Unpublished
KT2440	6 181 863	61.5	5481	87.5	74	22	22/01/2003	AE015451.1	Nelson et al. (2002)
W619	5 774 330	61.4	5292	89.8	75	22	11/03/2008	CP000949.1	Unpublished
P. stutzeri									
A1501	4567418	63.9	4237	90.3	61	13	20/04/2007	CP000304.1	Yan et al. (2008)
P. syringae									
pv. phaseolicola 1448A	5928787	57.9	5436§	86.8	64	16	01/08/2005	CP000058.1	Joardar et al. (2005a, b
pv. syringae B728a	6 093 698	59.2	5245	88.7	64	16	12/05/2005	CP000075.1	Feil et al. (2005)
pv. tomato DC3000	6397126	58.3	5721 [§]	85.6 [§]	64	16	21/08/2003	AE016853.1	Buell et al. (2003)

From: Silby et al., 2011 FEMSMicrobiolRev35(2011)652–680

Pseudomonas genetic diversity 2

Table 2. Genome diversity - predicted genes unique to single strains*

Pseudomonas isolate [†]	Not present in others of the species [‡]
P. aeruginosa 2192	187
P. aeruginosa C3719	45
P. aeruginosa LESB58	219
P. aeruginosa PA7	660
P. aeruginosa PACS2	29
P. aeruginosa PAO1	54
P. aeruginosa UCBPP-PA14	143
P. fluorescens Pf-5	821
P. fluorescens Pf0-1	657
P. fluorescens SBW25	1195
P. putida F1	272
P. putida GB-1	456
P. putida KT2440	422
P. putida W619	418
P. syringae pv. oryzae str. 1_6	573
P. syringae pv. phaseolicola 1448A	263
P. syringae pv. syringae B728a	216
P. syringae pv. tabaci ATCC 11528	353
P. syringae pv. tomato DC3000	330
P. syringae pv. tomato T1	412

^{*}Data retrieved 23 December 2010.

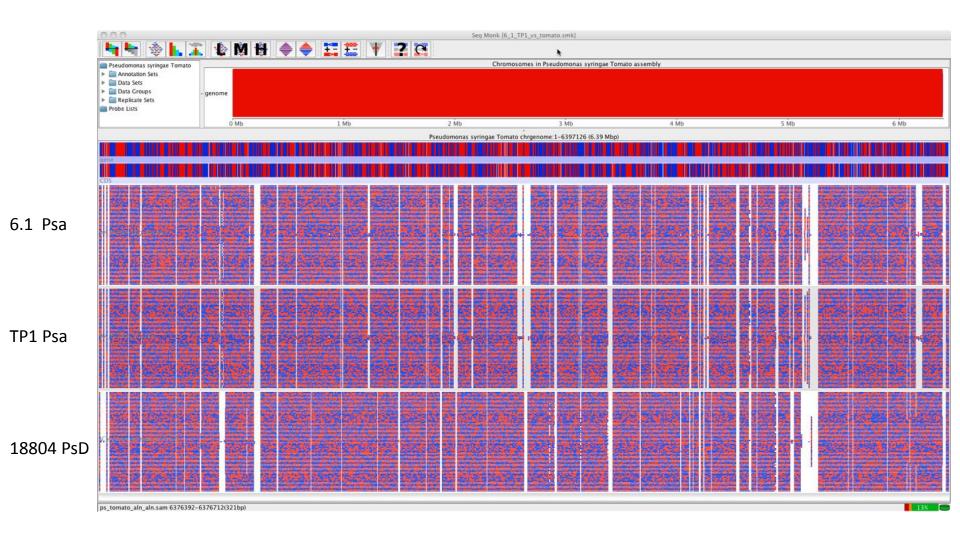
From: Silby et al., 2011 FEMSMicrobiolRev35(2011)652–680

Table 1. Draft Genome Sequencing Summary for 14 Phylogenetically Divergent P. syringae Strains.

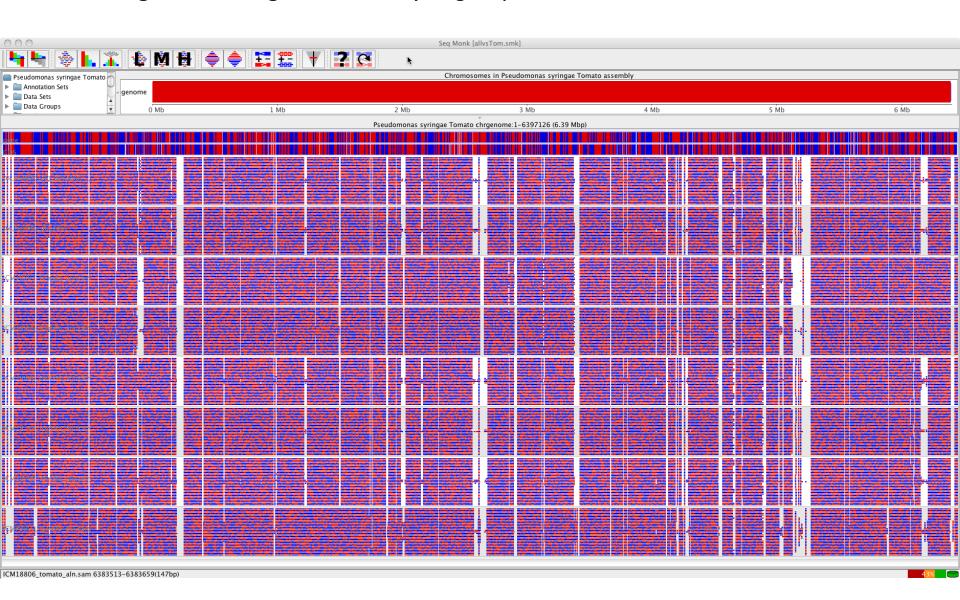
Identifier	Pgy R4	Pmo	Pta	Pae	Pla 107	Cit7	Pac	Ppi R6	Pja	Ptt	Pma	Pla 106	Ртр	Pan
Pathovar	glycinea	mori	tabaci	aesculi	lachrymans	NA	aceris	pisi	japonica	aptata	maculicola	lachrymans	morsprunorum	actinidiae
Strain	A29-2	MAFF301020	ATCC11528	0893_23	MAFF301315	Cit7	MAFF302273PT	1704B	MAFF 301072 PT	DSM50252	ES4326	MAFF302278PT	MAFF302280PT	MAFF302091
Illumina Reads	4251697	7592243	5030953	15848526	8360650	5319177	6897439	4637560	5122223	5446792	14975328	8177882	16637970	10336469
Illumina Bases	153,061,092	265,728,505	181,114,308	554,698,410	641,057,438	191,490,372	241,410,365	166,952,160	184,400,028	196,084,512	524,136,480	294,403,752	1,247,847,750	361,776,415
454 Reads	432,292	162,625	131,130	130,109	126,287	149,557	155,239	285,725	375,650	144,250	300,835	345,257	141,417	299,744
454 Bases	30,418,492	24,154,020	19,726,747	19,173,310	20,116,024	22,337,212	22,063,131	22,457,735	24,292,249	21,590,755	23,408,095	26,294,110	21,665,692	22,364,744
454 Paired Ends	116,271	51,096	39,842	41,071	33,455	46,380	51,113	104,112	108,436	44,421	110,879	84,301	42,284	112,016
# Contigs	4,430	3,414	1,613	915	791	2,655	1,179	5,099	4,661	3,776	878	798	969	941
Contigs N50	3,723	5,634	16,098	16,806	22,550	6,862	12,409	3,003	4,021	4,753	17,222	15,738	15,161	14,086
# Scaffolds	109	70	32	139	222	57	60	170	60	53	44	90	69	138
Scaffolds N50	111,252	203,999	344,662	81,010	129,539	399,070	176,541	83,352	181,972	165,542	340,783	135,618	175,394	69,188
NCBI Accession # t	ADWY	AEAG	AEAP	AEAD	AEAF*	AEAJ	AEAO	AEAI	AEAH	AEAN	AEAK	AEAM	AEAE	AEAL
Included in TTE Screen	Yes	Yes	No	No	Yes	No	Yes	Yes	No	Yes	Pma M4	Yes	Yes	Yes

Baltrus DA, Nishimura MT, Romanchuk A, Chang JH, Mukhtar MS, et al. (2011) Dynamic Evolution of Pathogenicity Revealed by Sequencing and Comparative Genomics of 19 Pseudomonas syringae Isolates. PLoS Pathog 7(7): e1002132

Table 2 Sequencing statistics for next-generation Pseudomonas syringae sequences


				No. of	No. of		
Strain	Sequencing method	Coverage	Assembly	Contigs	Scaffolds	N50	Reference
PtoT1	454 (241 bp)/Illumina (36 bp)	20X/94X	Newbler/Velvet 0.5	134	134	45,878	(65)
Psy642	Illumina PE (42 bp)	120X	Velvet 0.7.18	488	488	26,055	(11)
Pta11528	Illumina PE (36 bp)	145X	Velvet 0.7.18	1,405a	71	317,167	(65)
Pae3681	Illumina PE (36 bp)	116X	Velvet 0.7.48	841	557	26,400	(16)
Pae2250	Illumina PE (36 bp)	133X	Velvet 0.7.48	776	364	42,500	(16)
PaeP6617	Illumina PE (36 bp)	127X	MAQ 0.6.8	NA	NA	NA	(16)
PaeP6623	Illumina PE (36 bp)	106X	MAQ 0.6.8	NA	NA	NA	(16)
Psv3335	454/454 PE (~200 bp)	15X	Newbler	403ª	112	87,144ª	(56)
PorI_6	454 PE (~200 bp)/ Illumina (36 bp)	3X/24X	Newbler/VCAKE	2855a	130	531,821	(54)

^aCalculated from Genbank sequences.


Abbreviations: PE, paired-end; NA, not applicable as this was a reference assembly.

O'Brien et al., 2011. Annu. Rev. Phytopathol. 2011. 49:17.1–17.21

Three genomes aligned with the fully sequenced and annotated *P. syringae* pv. *tomato* DC3000 genome

All 8 new genomes aligned with P. syringae pv tomato DC3000

BLAST®

Basic Local Alignment Search Tool

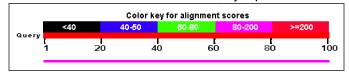
NCBI/ BLAST/ blastn suite/ Formatting Results - 6161XA1E01R

s6_1204_5661_120130

 Query ID
 lcl|58943

 Description
 s6_1204_5661_120130

 Molecule type
 nucleic acid


Database Name wgs **Description** Who

Description Whole-Genome-Shotgun Sequences Program BLASTN 2.2.25+

Graphic Summary

Query Length 101

Distribution of 1 Blast Hits on the Query Sequence

Descriptions

Legend for links to other resources: UniGene ☐ GEO ☐ Gene Structure Map Viewer ☐ PubChem BioAssay

Accession	Description	Max score	Total score	Query coverage	<u>E</u> value	Max ident	Links
AEAL01000690.1	Pseudomonas syringae pv. actinidiae str. M302091 contig167.1, whole genome shotgun sequence	<u>183</u>	183	100%	6e-43	99%	

.

Alignments

 $>\!\!$ db[AEAL01000690.1] Pseudomonas syringae pv. actinidiae str. M302091 contig167.1, whole genome shotgun sequence Length=985

```
Score = 183 bits (99), Expect = 6e-43 Identities = 100/101 (99%), Gaps = 0/101 (0%) Strand=Plus/Plus
```

Query	1	GGCGCGTTGGCCAGGCGGACCTGCATTTCTTCTAGCACTGTCTCATGTTCCCAGCGCCNA	60
Sbjct	344	GGCGCGTTGGCCAGGCGGACCTGCATTTCTTCTAGCACTGTCTCATGTTCCCAGCGCCGA	403
Query	61	ACCTTTCTCTCTCGGGCCGGTGTGCATTGCGCCTTTATCGA 101	
Sbjct	404	ACCTTTCTCTCGGGCCGGTGTGCATTGCGCCTTTATCGA 444	

College of Plant Protection Northwest Agriculture & Forestry University Yang Ling Shaanxi province

Mt.Huashan

Qin Terra-cotta Warriors

Hukou Waterfall, Yellow River

