

Mike Manning, Ian Horner, Joy Tyson, Jonathan Rees-George, Juliet Herrick, Tim Holmes, Paul Sutherland, Ian Hallett

First symptoms – leaf spots and blossom and fruitlet death (November 2010)

Dark areas at junction of shoot and cane

Followed by shoot dieback (8th November 2010)

Removal of vines in orchards with Psa (15th November 2010)

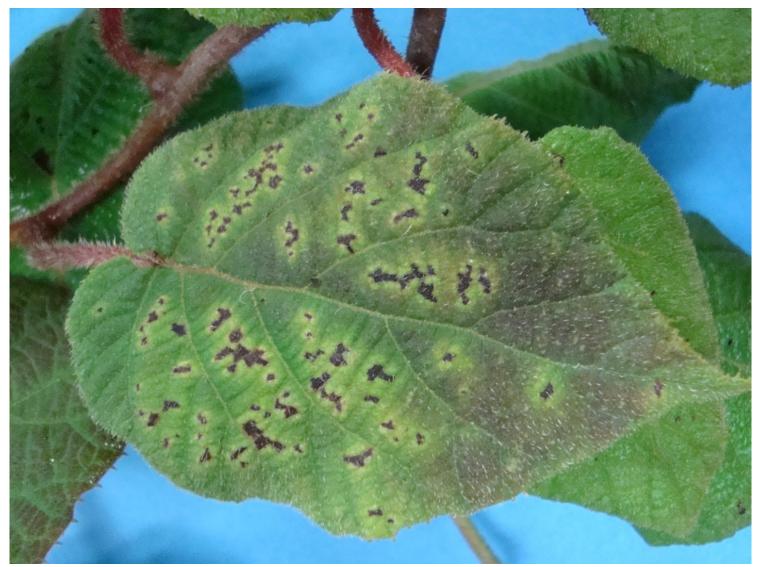
Three areas of study for our team.

Monitoring the spread of disease in commercial orchard blocks. To understand the disease cycle in New Zealand

Spread within vine wood

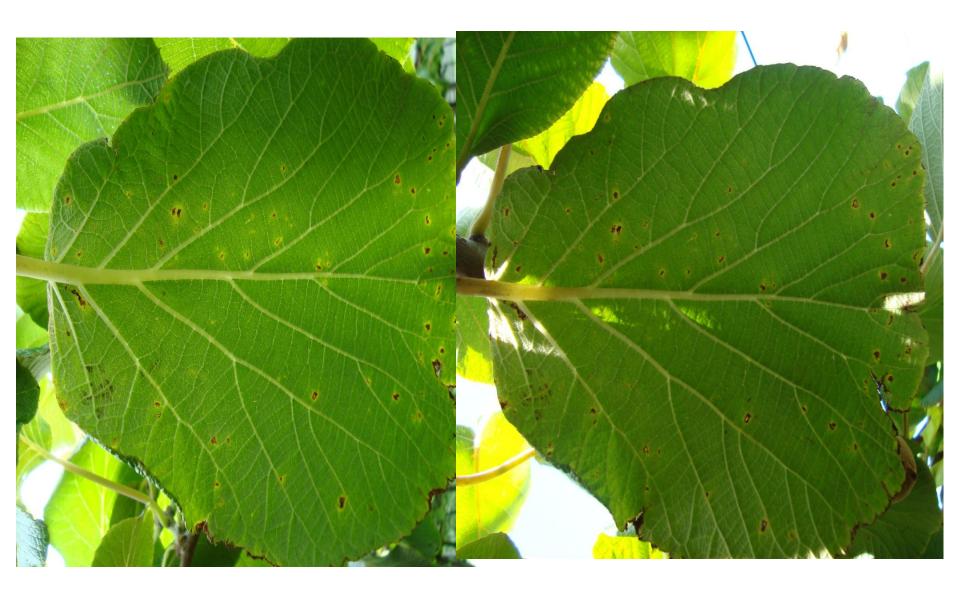
To help with orchard management decisions such as "how much of the vine needs to be removed".

Documenting the development of disease in Te Puke Research orchard – where about 54,000 vines are monitored

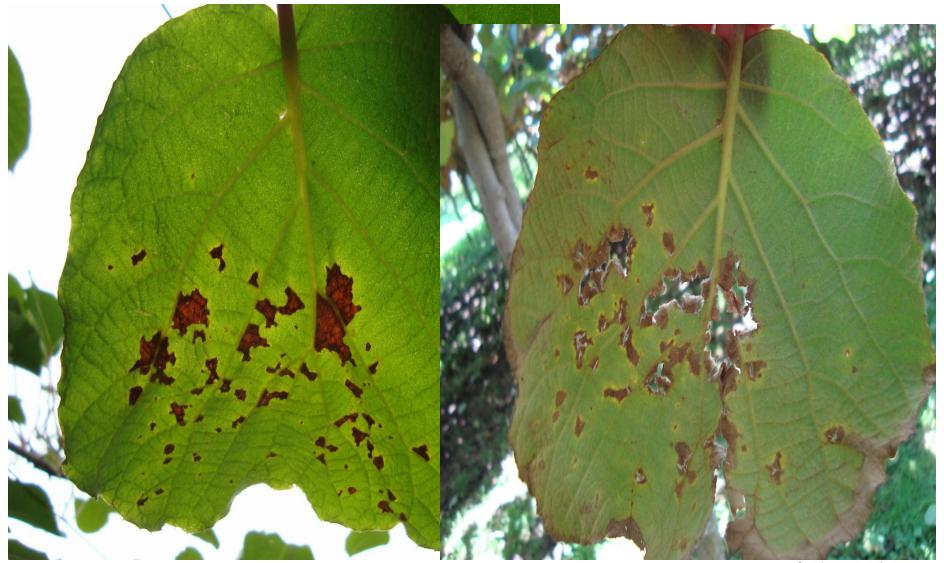

To identify vines with some resistance to Psa

Leaf spotting with halo (spring onwards)

Blocky/angular spots with halo (spring onwards)



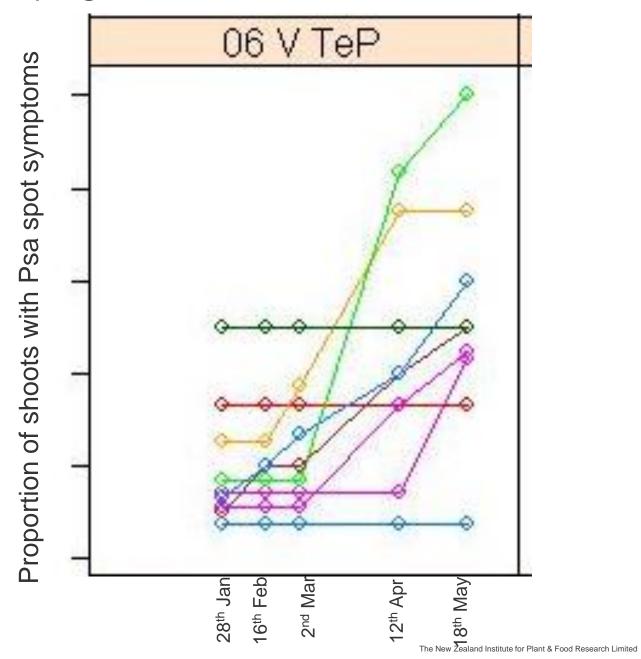
Blocky/angular spots without halo (spring onwards)



Leaf spot development – Hort16A (December to March)



Leaf spot development – Hayward (December to March)


Where are the spotty leaves on the vine?

Monitor the same shoots and canes on 14

Disease progression in Psa V orchard

Summary – spread in orchards study

Measurements made on at least 14 orchards with symptoms of Psa (one block each orchard and 50 bays)

- 1. Hort16A
- 2. Hayward
- 3. LV low virulence
- 4. V high virulence

Leaf spotting

Little change in number or size of leaf spots throughout summer

Spread in orchards

 Psa was active and capable of starting new leaf infections throughout summer

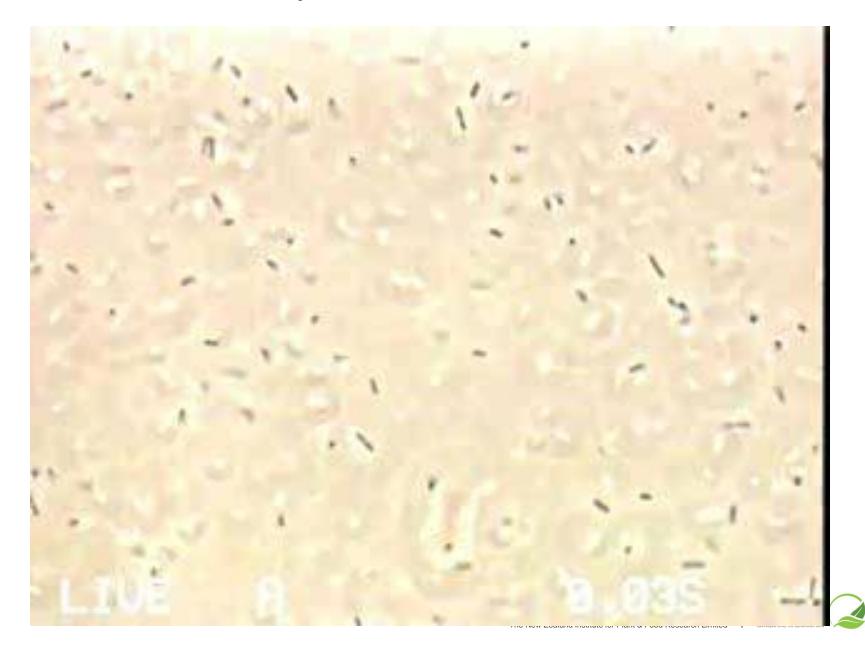
Wood symptoms - March 2011

White ooze

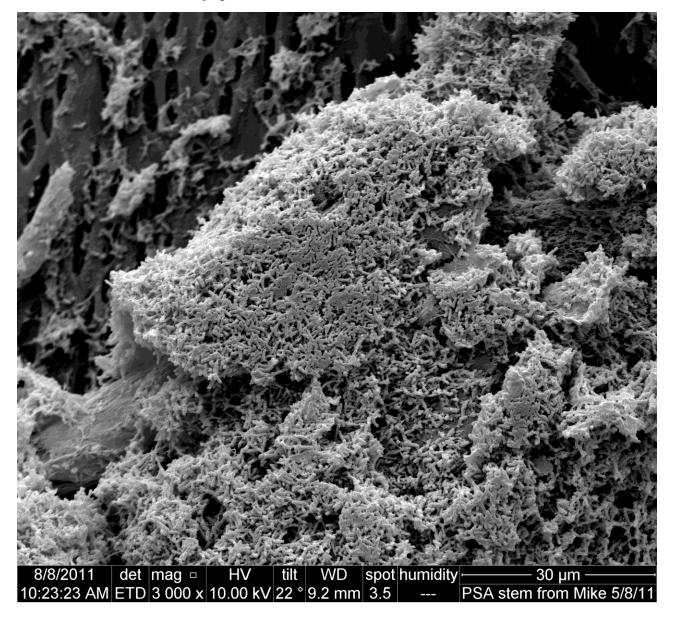
August 8th 2011 Gold

Mid July 2011 ('Hort16A orchard with deliciosa trunks)

Psa ooze (Hort16A leader) cut for 25 minutes



Video of oozing after cutting leader wood in Psa "V" orchard July 2011



Psuedomonas motility

Electron microscopy – Paul Sutherland/Ian Hallett

Where is Psa within vines? - from cane to crown

Orchard 3 result of Psa test

		cane	258.22.1							
		cane	258.21.1							
cane	255.20.1	cane	258.20.1	cane	259.20.1	cane	260.20.1	cane	261.20.1	
cane	255.19.1	cane	258.19.1	cane	259.19.1	cane	260.19.1	cane	261.19.1	
cane	255.18.1	cane	258.18.1	cane	259.18.1	cane	260.18.1	cane	261.18.1	
cane	255.17.1	cane	258.17.1	cane	259.17.1	cane	260.17.1	cane	261.17.1	
cane	255.16.1	cane	258.16.1	cane	259.16.1	cane	260.16.1	cane	261.16.1	
cane	255.15.1	cane	258.15.1	cane	259.15.1	cane	260.15.1	cane	261.15.1	
cane	255.14.1	cane	258.14.1	cane	259.14.1	cane	260.14.1	cane	261.14.1	
cane	255.13.1	cane	258.13.1	cane	259.13.1	cane	260.13.1	cane	261.13.1	
cane	255.12.1	cane	258.12.1	cane	259.12.1	cane	260.12.1	cane	261.12.1	
trunk	255.11.1	cane	258.11.1	cane	259.11.1	cane	260.11.1	cane	261.11.1	
trunk	255.10.1	cane	258.10.1	cane	259.10.1	trunk	260.10.1	cane	261.10.1	
trunk	255.9.1	cane	258.9.1	cane	259.9.1	trunk	260.9.1	trunk	261.9.1	
trunk	255.8.1	trunk	258.8.1	cane	259.8.1	trunk	260.8.1	trunk	261.8.1	
trunk	255.7.1	trunk	258.7.1	trunk	259.7.1	trunk	260.7.1	trunk	261.7.1	
trunk	255.6.1	trunk	258.6.1	trunk	259.6.1	trunk	260.6.1	trunk	261.6.1	
trunk	255.5.1	trunk	258.5.1	trunk	259.5.1	trunk	260.5.1	trunk	261.5.1	
trunk	255.4.1	trunk	258.4.1	trunk	259.4.1	trunk	260.4.1	trunk	261.4.1	
trunk	255.3.1	trunk	258.3.1	trunk	259.3.1	trunk	260.3.1	trunk	261.3.1	
trunk	255.2.1	trunk	258.2.1	trunk	259.2.1	trunk	260.2.1	trunk	261.2.1	
trunk	255.1.1	trunk	258.1.1	trunk	259.1.1	trunk	260.1.1	trunk	261.1.1	
	Vine 1		Vine 2		Vine 3		Vine 4		Vine 5	

Is Psa in the roots? – in this case A. chinensis

Detection of Psa in a vine from scion to roots

Scion				1				Psa key	Not detected	
				2					Weak positive	
				3					Positive	
				4						
Trunk				5						
				6						
				7						
				8						
				9						
Crown				1 0a	10b					
				11 a	11b					
Roots	22	20	18	24	16	14	12			
	23	21	19	2 5	17	15	13			
				26						
				27						
				28						
				29						

Summary – in vine study

Method

- 25 vines in 4 orchards
- 3 times during the season Autumn, Winter and Spring
- Isolations of bacteria for ID (i.e. live bacteria)

Interim summary (winter 2011)

- Live Psa can be detected in wood, using our sampling technique
- Canes, leaders and trunks
- Has been found in roots where a canker near ground level

Documenting Psa spread at T/P Research orchard

Diploid A. chinesis breeding block at TPRO 11/8/2011

Documenting the development of disease in Te Puke research orchard.

Killed shoots of Hort16A – late September

Summary

Spread in orchards - leaf spotting

- Psa was active and capable of starting new leaf infections throughout summer
- Little change in number or size of leaf spots throughout summer

Psa in wood

- Live Psa can be detected in wood, using our sampling technique
- Canes, leaders and trunks
- Has been found in roots where a canker near ground level
- The levels detected in trunks are lower than in symptomatic canes on the same vine.

Summary

How to manage Psa in vines - no one solution fits all.

Psa has been found in leaves, canes, leaders, trunks and roots.

Less in Hayward, so they may be slightly tolerant – consider rootstock.

If the infection is well established in the vine growers should remove the vine.

If the infection is light growers may choose to cut to the trunk and regraft a less susceptible scion (if they can be identified).

Some growers may choose to rogue out any sign of secondary infection and hope to keep a crop on until harvest.

This presentation has been prepared based on information available at the time of publication, which is inherently preliminary in nature and subject to change. No party, including without limitation, Kiwifruit Vine Health Incorporated, the New Zealand Government, Plant & Food Research and ZESPRI Group Limited, makes any warranty, representation or guarantee as to the accuracy and/or completeness of the information regarding Psa, potential treatments and/or best treatment practice, and none of those parties shall be liable to any person for any loss arising from that person's reliance on the information and/or for any damages arising out of or connected with the use of the enclosed information. No obligation is accepted or undertaken to update this or any other information or publicly release revisions to this document to reflect additional information, circumstances or changes in expectations, which occur after the date of this document.

